

1er juillet 2013

Contenu

Détermination du diamètre

1.1	Princi	pes de la dynamique des fluides2
	1.1.1	Perte de charge totale dans une installation
	1.1.2	Perte de charge par frottement
	1.1.3	Perte de charge par résistances unitaires
	1.1.4	Exemple de calcul
	1.1.5	Loi sur la résistance quadratique
1.2	Déterr	mination du diamètre des conduites
	1.2.1	Unités de raccordement
	1.2.2	Dimension des tubes
1.3	Résist	tances unitaires des systèmes d'alimentation Geberit
	1.3.1	Résistances unitaires du Geberit PushFit
	1.3.2	Résistances unitaires du Geberit Mepla
	1.3.3	Résistances unitaires du Geberit Mapress
1.4	_	amme de perte de charge des systèmes d'alimentation it
	1.4.1	Diagrammes de perte de charge du Geberit PushFit 10
	1.4.2	Diagramme de perte de charge du Geberit Mepla 12
	1.4.3	Diagrammes de perte de charge du Geberit Mapress 14
	1.4.4	Diagrammes de perte de charge de la robinetterie de distribution Geberit
1.5	Annex	(e2′
	1.5.1	Volume spécifique et densité de l'eau
	1.5.2	Exemple de calcul de perte de charge, eau

1.1 Principes de la dynamique des fluides

1.1.1 Perte de charge totale dans une installation

La perte de charge totale Δp_{tot} d'une installation est obtenue par la somme des pertes de charge par frottement Δp_R et les pertes de charge par résistances unitaires Δp_F .

$$\Delta p_{tot} = \Delta p_R + \Delta p_E$$

 Δp_R : Perte de charge par frottement [Pa]

Δp_E: Perte de charge par résistances unitaires [Pa]

100 000 Pa = 100 kPa = 1 bar = 1 000 mbar

1.1.2 Perte de charge par frottement

La perte de charge par frottement Δp_R est le résultat de la diminution de la perte de charge par frottement R (baisse de pression dans la conduite droite) et de la longueur de la conduite l. La diminution de la perte de charge par frottement R dépend du débit volumique, du diamètre intérieur, du matériau de la conduite et de la température. Elle peut être calculée ou prélevée des tableaux et diagrammes (voir paragraphe 1.4 "Diagramme de perte de charge des systèmes d'alimentation Geberit", page 10).

$$\Delta p_R = R \cdot I$$

Δp_R: Perte de charge par frottement [Pa]

R: Diminution de la perte de charge par frottement [Pa/m]

I: Longueur du tube [m]

1.1.3 Perte de charge par résistances unitaires

Coefficient de perte de charge (valeur zêta)

Le coefficient de perte de charge (valeurs zêta) d'un raccord est une grandeur sans dimension, avec laquelle la résistance sur la pression dynamique de l'eau est représentée. Elle donne des renseignements sur la grandeur de la résistance dynamique d'un raccord et est déterminée de manière empirique. La perte de charge par résistance unitaire Δp_E se calcule par le coefficient de perte de charge (valeurs zêta) multiplié par la pression dynamique.

Les résistances unitaires des systèmes d'alimentation Geberit peuvent être consultées au chapitre 1.3 "Résistances unitaires des systèmes d'alimentation Geberit", page 6.

$$\Delta p_{E} = Z = \sum_{i} \zeta \cdot \frac{\rho}{2} \cdot w^{2}$$
 $\left[\frac{kg \cdot m^{2}}{m^{3} \cdot s^{2}} = \frac{N}{m^{2}} = Pa\right]$

Dans la technique sanitaire, en règle générale Δp_E est écrit

 Δp_E :Perte de charge par résistances unitaires [Pa] Σ ζ : Somme des coefficients de perte de charge (valeur zêta) [facteur]

ρ:Densité [kg/m³] w:Vitesse [m/s]

Exemple de calcul

Donné

- Valeur zêta = 9.0
- Densité de l'eau = 1 000 kg/m³
- = w = 2.0 m/s

Recherché: Perte de charge en mbar Solution:

$$9.0 \cdot \frac{1000}{2} \cdot 2.0^2 = 18000 \text{ Pa}$$

$$= 180 \text{ mbar}$$

Longueurs équivalentes de la conduite (longueurs de valeur identique)

Dans un but de simplification, les résistances unitaires peuvent également être prises en compte sans coefficient de perte de charge (valeur zêta) avec la longueur équivalente de la conduite (longueur de valeur identique). La longueur équivalente de la conduite (longueur de valeur identique) est à additionner avec la longueur de la conduite I et ensuite à multiplier par la diminution de la perte de charge par frottement R y relative.

1.1.4 Exemple de calcul

Donné:

- Conduite Geberit Mapress ø 15 (15.0 x 1.0 mm)
- Débit volumique =0.1 l/s (1 LU)
- R = 7.4 mbar/m (voir paragraphe 1.4.3 "Diagrammes de perte de charge du Geberit Mapress", page 14)
- Longueur = 5 m
- Coefficient de perte de charge ζ (voir tableau 10, page 9):
 - 1 équerre de raccordement 1.10
 1 coude 90° 0.45
 - 1 té d'embranchement 1.17 - Total 2.72
- Densité ρ eau à 10 °C = 999.7 kg/m³ (voir paragraphe "Annexe", Tableau 11: "Température de l'eau, densité et volume", page 21)
- Vitesse w = 0.75 m/s (voir paragraphe 1.4.3 "Diagrammes de perte de charge du Geberit Mapress", page 14)

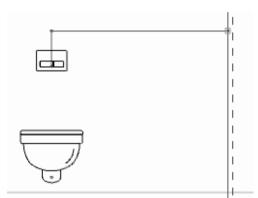


Fig. 1: Conduite de raccordement sur l'installation de WC

Recherché:

■ Perte de charge ∆p_{tot} en mbar

Solution:

$$\Delta p_{R} = R \cdot I$$
 $\left[\frac{mbar \cdot m}{m} = mbar\right]$

$$\Delta p_{R} = 7.4 \frac{\text{mbar}}{\text{m}} \cdot 5.0 \,\text{m}$$

$$\Delta p_{R} = 37.0 \, \text{mbar}$$

$$\Delta p_E = Z = \sum_i \zeta \cdot \frac{\rho}{2} \cdot w^2$$
 $\left[\frac{kg \cdot m^2}{m^3 \cdot s^2} = \frac{N}{m^2} = Pa\right]$

$$\Delta p_{E} = 2.72 \cdot \frac{999.7}{2} \cdot 0.75^{2}$$

$$\Delta p_F = 764.77 \, Pa = 7.6 \, mbar$$

$$\Delta p_{tot} = \Delta p_R + \Delta p_E$$

$$\Delta p_{tot} = 37.0 \text{ mbar} + 7.6 \text{ mbar} = 44.6 \text{ mbar}$$

1.1.5 Loi sur la résistance quadratique

La perte de charge se comporte de manière quadratique par rapport aux débits volumiques. De ce fait, un débit volumique divisé par deux signifie encore un quart de la perte de charge. Ainsi, le débit volumique est plus grand, ce qui influence la perte de charge de manière déterminante.

$$\frac{\Delta p_1}{\Delta p_2} = \frac{\dot{V}_1^2}{\dot{V}_2^2} \qquad \left[\frac{mbar}{mbar} = \frac{I \cdot s}{s \cdot I} \right]$$

Δp₁: Perte de charge avant modification [mbar]

Δp₂: Perte de charge après modification [mbar]

V₁: Débit volumique avant modification [l/s]

V₂: Débit volumique après modification [l/s]

Détermination du diamètre des conduites

1.2 Détermination du diamètre des conduites

1.2.1 Unités de raccordement

Tableau 1: Unité de raccordement LU (Loading Unit) par raccord

Champ d'application: Raccords DN 15 (1/2")	Q _A froid [l/s]	Q _A chaud [l/s]	LU froid [–]	LU chaud [−]
Réservoirs de chasse, distributeur de boissons	0.1	-	1	-
Lavabo, lavabo-rigole, bidet, douche de coiffeur	0.1	0.1	1	1
Lave-vaisselle à usage domestique	0.1	-	1	-
Lave-linge à usage domestique	0.2	-	2	-
Robinet de puisage pour balcons	0.2	-	2	-
Douche, évier, bassin de lavage, déversoir, vidoir au sol, vidoir mural	0.2	0.2	2	2
Robinet de chasse automatique pour urinoir	0.3	-	3	-
Baignoire	0.3	0.3	3	3
Robinet de puisage pour jardin et garage	0.5	-	5	-

⁻ Ne pas tenir compte des robinets de remplissage de chauffage pour la détermination du diamètre des conduites.

⁻ Les dispositifs avec des raccords supérieurs à 1/2" et/ou des débits spéciaux doivent toujours être calculés selon les instructions du fabricant en fonction de la perte de pression.

1.2.2 Dimension des tubes

Tableau 2: Geberit PushFit

Total des unités de raccordement [LU]	2	3	4	10	20
Unité de raccordement maximale [LU]		2		3	5
Dimension du tube d _a [mm]		16	20	25	
Diamètre intérieur d _i [mm]		12		16	20
Longueur du tube recommandée [m]	10	5	3		

Tableau 3: Geberit Mepla

Total des unités de raccordement [LU]	1	2	3	4	8	16	50	150
Unité de raccordement maximale [LU]	1		2		3	5		
Dimension du tube d _a [mm]		1	6		20	26	32	40
Diamètre intérieur d _i [mm]		11	1.5		15	20	26	33
Longueur du tube recommandée [m]	15	10	5	3				

Tableau 4: Geberit Mapress

Total des unités de raccordement [LU]	2	3	5	8	16	50	150
Unité de raccordement maximale [LU]		2		3			
Dimension du tube d _a [mm]		15		18	22	28	35
Diamètre intérieur d _i [mm]		13		16	19.6	25.6	32
Longueur du tube recommandée [m]	15	9	7				

Remarque

Les tableaux d'unités de raccordement de Geberit ne correspondent pas au dimensionnement avec la méthode simplifiée selon la directive W3 de la SSIGE, édition 2013. Lors de l'utilisation des tableaux pour le dimensionnement des conduites de distribution ainsi que des conduites de distribution d'étage (installation à l'aide de tés ou conduites de raccordement unitaires) et en tenant compte des critères suivants, les conditions de pression et les vitesses maximales d'écoulement fixées par la directive de la SSIGE sont toutefois respectées:

- Pas de plus grands points de puisage que dans le tableau des unités de raccordement (Tableau 1 à la page 4)
- Pas de dépassement du débit de pointe conformément à la directive W3 de la SSIGE, édition 2013, diagramme 1
- Pas de puisage continu (supérieur à 15 minutes)
- Une différence de hauteur maximale de 12 m entre la batterie de distribution et le point de puisage le plus élevé
- Une pression statique de 5 bar après le réducteur de pression
- Au maximum 150 LU par tronçon à partir de la batterie de distribution et une longueur maximale de la conduite de 50 m

Résistances unitaires des systèmes d'alimentation Geberit

1.3 Résistances unitaires des systèmes d'alimentation Geberit

1.3.1 Résistances unitaires du Geberit PushFit

Longueurs équivalentes de la conduite (valeur identique)

Les valeurs ont été déterminées conformément aux prescriptions de la SSIGE (SN EN 1267).

Tableau 5: Longueurs équivalentes (valeur identique) des raccords Geberit PushFit

		Longue	ur équivalente des tub	oes en m
		ø 16	ø 20	ø 25
Tube coudé		0.1	0.1	0.1
Equerre 90°	ţ	6.1	5.5	5.1
Tés Passage	1 	2.0	1.4	1.1
Tés Embranchement		6.1	5.7	5.4
Manchon		1.7	1.2	0.9
Réduction		1.2	0.9	-
Equerre de raccordement	Ļ"	3.3	3.8	-
Boîte de raccordement 90° 1/2" Raccordement	Ļ ∥	2.4	3.2	-
Boîte de raccordement 90° 3/4" Raccordement	₽	-	2.8	-
Boîte de raccordement double 90° 1/2" Raccordement	×× II	6.4	6.4	-
Boîte de raccordement double 90° 1/2" Débit de passage	×	3.9	4.4	-
Boîte de raccordement 60° 1/2" Raccordement	*	4.0	3.4	-
Distributeur 1" Départ		2.3	2.0	-
Distributeur 1" avec robinet d'arrêt 1" Départ		2.9	4.6	-

Coefficients de perte de charge ζ (valeurs zêta)

Les valeurs ont été déterminées conformément aux prescriptions de la SSIGE (SN EN 1267).

Tableau 6: Coefficients de perte de charge ζ (valeurs zêta) des raccords Geberit PushFit

		Coefficients	de perte de charge ζ	(valeurs zêta)
		ø 16	ø 20	ø 25
Tube coudé		0.1	0.1	0.1
Equerre 90°	ţ	13.4	8.3	5.9
Tés Passage	-	4.2	2.1	1.2
Tés Embranchement	→+	13.4	8.6	6.2
Manchon	-00-	3.6	1.8	1.0
Réduction	- - - - - - -	2.6	1.4	-
Equerre de raccordement	Ļ	7.1	5.8	-
Boîte de raccordement 90° 1/2" Raccordement	Ţ	5.0	4.7	-
Boîte de raccordement 90° 3/4" Raccordement	Ţ	-	4.2	-
Boîte de raccordement double 90° 1/2" Raccordement	×××	9.4	9.4	-
Boîte de raccordement double 90° 1/2" Débit de passage	×⁄×	5.8	6.4	-
Boîte de raccordement 60° 1/2" Raccordement	*	8.7	5.1	-
Distributeur 1" Départ		4.8	3.0	-
Distributeur 1" avec robinet d'arrêt 1" Départ		6.1	6.8	-

Résistances unitaires des systèmes d'alimentation Geberit

1.3.2 Résistances unitaires du Geberit Mepla

Longueurs équivalentes de la conduite (valeur identique)

Tableau 7: Longueurs équivalentes (valeur identique) des raccords Geberit Mepla

			ı	Longueur	équivale	nte des t	ubes en r	n	
		ø 16	ø 20	ø 26	ø 32	ø 40	ø 50	ø 63	ø 75
Tube coudé		0.1	0.1	0.1	0.2	0.3	0.3	_ 1)	_ 1)
Equerre 90°	ţ	6.5	5.5	6.1	5.7	6.9	8.7	12.1	19.6
Equerre 45°	/- I	_	-	2.5	2.3	2.6	2.8	5.6	8.1
Tés Passage	- -	2.1	1.6	1.2	1.2	1.5	1.3	2.6	4.1
Tés Côté	- ↓ -	6.5	5.5	6.1	5.7	6.9	8.7	12.1	19.6
Manchon		1.8	1.4	1.1	1.0	1.0	1.1	2.1	3.3
Réduction		1.2	1.1	1.1	1.0	1.0	0.9	1.8	-
Equerre de raccorde- ment	_	3.2	2.6	3.4	-	-	-	-	-

¹⁾ Les tubes de Ø 63 et de Ø 75 mm ne doivent pas être cintrés. Pour les changements de direction, il convient d'utiliser des coudes à 90° et à 45°.

Coefficients de perte de charge ζ (valeurs zêta)

Tableau 8: Coefficients de perte de charge ζ (valeurs zêta) des raccords Geberit Mepla

			Coeff	icients de	e perte de	charge ((valeurs	zêta)	
		ø 16	ø 20	ø 26	ø 32	ø 40	ø 50	ø 63	ø 75
Tube coudé		0.17	0.14	0.08	0.13	0.21	0.13	_ 1)	_ 1)
Equerre 90°	ţ	15.0	9.0	7.0	4.7	4.3	4.0	4.1	5.3
Equerre 45°	/ +	-	-	2.9	1.9	1.6	1.3	1.9	2.2
Tés Passage	1	4.8	2.6	1.4	1.0	0.9	0.6	0.9	1.1
Tés Côté	- ↓ -	15.0	9.0	7.0	4.7	4.3	4.0	4.1	5.3
Manchon	-00-	4.1	2.3	1.3	0.8	0.6	0.5	0.7	0.9
Réduction		2.8	1.8	1.3	0.8	0.6	0.4	0.6	-
Equerre de raccorde- ment	₽	7.4	4.3	3.9	-	-	-	-	-

¹⁾ Les tubes de ø 63 et de ø 75 mm ne doivent pas être cintrés. Pour les changements de direction, il convient d'utiliser des coudes à 90° et à 45°.

1.3.3 Résistances unitaires du Geberit Mapress

Longueurs équivalentes de la conduite (valeur identique)

Tableau 9: Longueur équivalente (valeur identique) des raccords Geberit Mapress

_	-			Lo	ngueur e	équivale	nte des	tubes e	n m		
		ø 15	ø 18	ø 22	ø 28	ø 35	ø 42	ø 54	ø 76.1	ø 88.9	ø 108
Coude 90°	Ļ	0.24	0.28	0.35	0.51	0.55	0.67	0.87	1.23	1.44	1.75
Equerre 45°	/ 1	0.18	0.21	0.25	0.31	0.34	0.41	0.54	0.77	0.89	1.09
Té de passage	1	0.10	0.11	0.14	0.15	0.20	0.22	0.25	0.23	0.26	0.31
Té d'embranchement	-	0.62	0.81	1.01	1.43	1.84	2.39	3.39	5.79	7.03	8.94
Manchon		0.09	0.09	0.12	0.13	0.17	0.18	0.20	0.14	0.16	0.19
Réduction		0.10	0.08	0.10	0.11	0.15	0.16	0.21	0.15	0.17	_
Equerre de raccorde- ment	Ţ	0.58	0.80	0.94	-	-	-	-	-	-	-

Coefficients de perte de charge ζ (valeurs zêta)

Tableau 10: Coefficients de perte de charge ζ (valeurs zêta) des raccords Geberit Mapress

				Coeffic	ients de	perte de	charge	ζ (valeι	ırs zêta)		
		ø 15	ø 18	ø 22	ø 28	ø 35	ø 42	ø 54	ø 76.1	ø 88.9	ø 108
Coude 90°	ţ	0.45	0.42	0.39	0.42	0.34	0.33	0.31	0.29	0.28	0.26
Equerre 45°	/	0.34	0.30	0.29	0.26	0.21	0.20	0.19	0.18	0.17	0.16
Té de passage	 	0.20	0.16	0.16	0.12	0.13	0.11	0.09	0.05	0.05	0.05
Té d'embranche- ment	- ↓ - - - - - - - - - - - - - - - - - - -	1.17	1.19	1.15	1.18	1.15	1.17	1.20	1.35	1.35	1.35
Manchon		0.17	0.14	0.14	0.10	0.11	0.09	0.07	0.03	0.03	0.03
Réduction		0.14	0.12	0.11	0.09	0.09	0.08	0.07	0.03	0.03	_
Equerre de raccor- dement	Ţ	1.10	1.18	1.07	-	-	-	-	-	-	-

Diagramme de perte de charge des systèmes d'alimentation Geberit

1.4 Diagramme de perte de charge des systèmes d'alimentation Geberit

Quelques reproductions de diagrammes de perte de charge se trouvent ci-après. Des diagrammes supplémentaires sont disponibles sous www.geberit.ch.

1.4.1 Diagrammes de perte de charge du Geberit PushFit

Perte de charge sanitaire, eau froide

■ Substance: Eau
 ■ Température: 10 °C
 ■ Densité: 999,7 kg/m³
 ■ Viscosité: 0,00131 Pa·s
 ■ Rugosité surfacique: 0,007 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

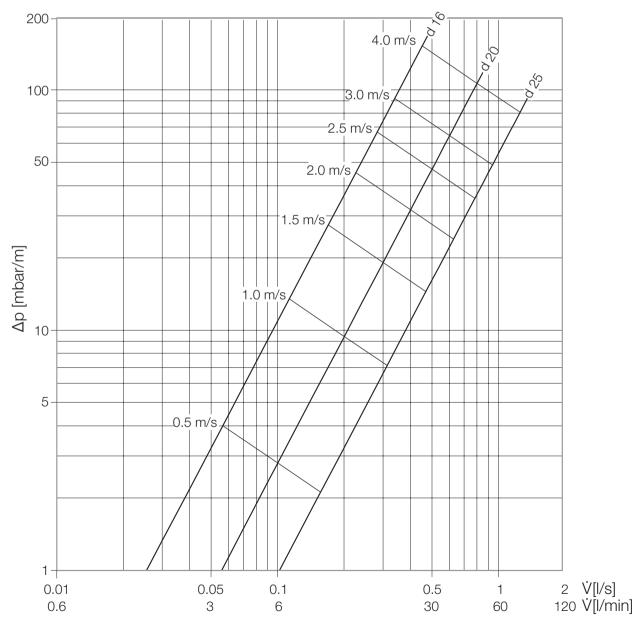


Fig. 2: Diagramme de perte de charge du Geberit PushFit sanitaire, eau froide

Perte de charge sanitaire, eau chaude

■ Substance: Eau
 ■ Température: 65 °C
 ■ Densité: 980 kg/m³
 ■ Viscosité: 0.00043 Pa·s

Rugosité surfacique: 0,007 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

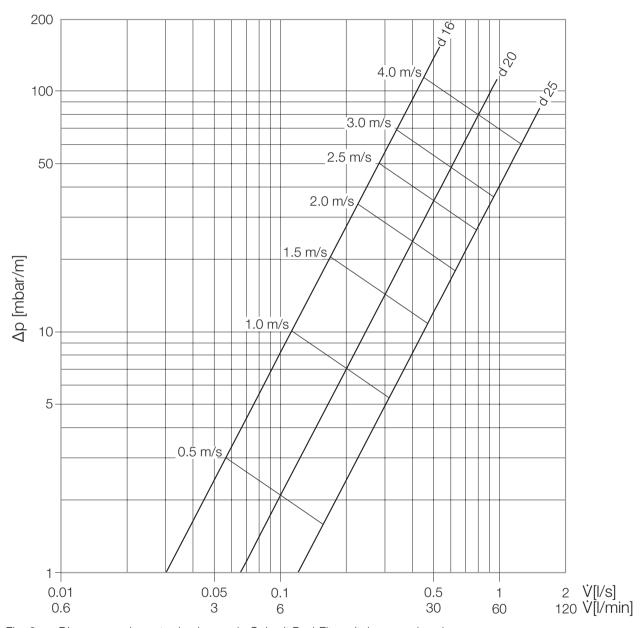


Fig. 3: Diagramme de perte de charge du Geberit PushFit sanitaire, eau chaude

1.4.2 Diagramme de perte de charge du Geberit Mepla

Perte de charge sanitaire, eau froide

Substance: Eau
 Température: 10 °C
 Densité: 999,7 kg/m³
 Viscosité: 0,00131 Pa·s
 Rugosité surfacique: 0,007 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

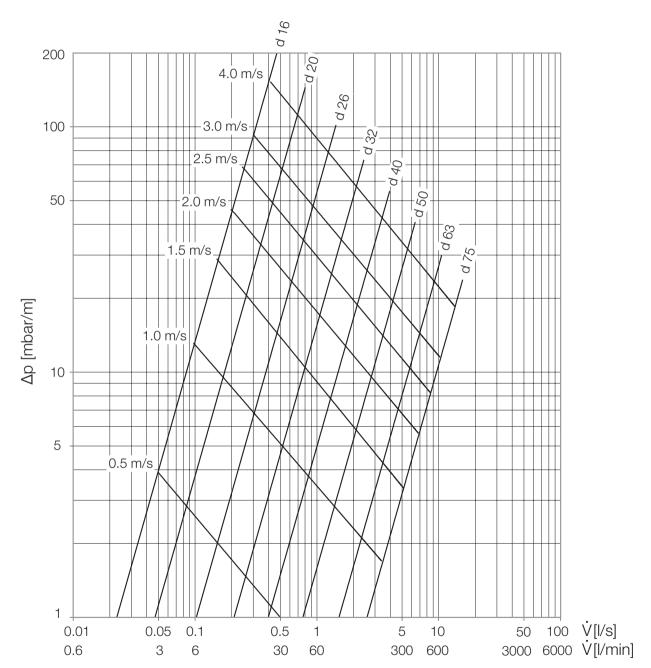


Fig. 4: Diagramme de perte de charge du Geberit Mepla sanitaire, eau froide

Perte de charge sanitaire, eau chaude

Substance: Eau
 Température: 65 °C
 Densité: 980 kg/m³
 Viscosité: 0.00043 Pa·s
 Rugosité surfacique: 0,007 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

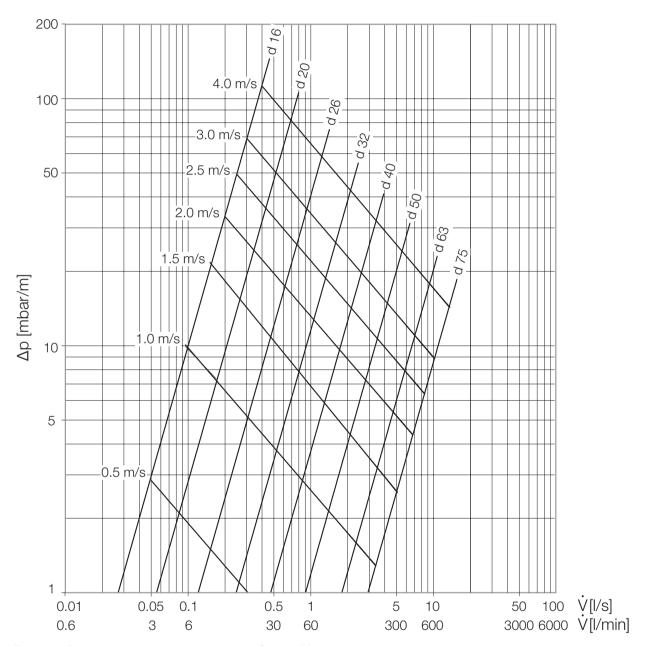


Fig. 5: Diagramme de perte de charge du Geberit Mepla sanitaire, eau chaude

1.4.3 Diagrammes de perte de charge du Geberit Mapress

Perte de charge sanitaire, eau froide

■ Substance: Eau à 10 °C
 ■ Densité: 999.7 kg/m³
 ■ Viscosité: 0.0013 Pa·s

■ Rugosité surfacique: 0.0015 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

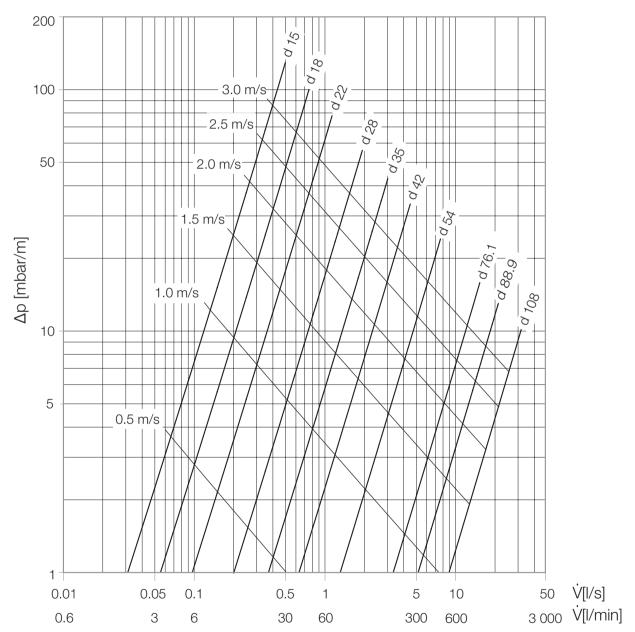


Fig. 6: Diagramme de perte de charge du Geberit Mapress acier inoxydable sanitaire, eau froide

Perte de charge sanitaire, eau chaude

■ Substance: Eau à 60 °C
 ■ Densité: 983.2 kg/m³
 ■ Viscosité: 0.0005 Pa·s

■ Rugosité surfacique: 0.0015 mm

- Conduites de soutirage max. 4.0 m/s (recommandation Geberit jusqu'à 3.0 m/s)
- Groupe d'appareils / Distributions d'étage max. 3.0 m/s
- Distributions d'étage max. 2.0 m/s

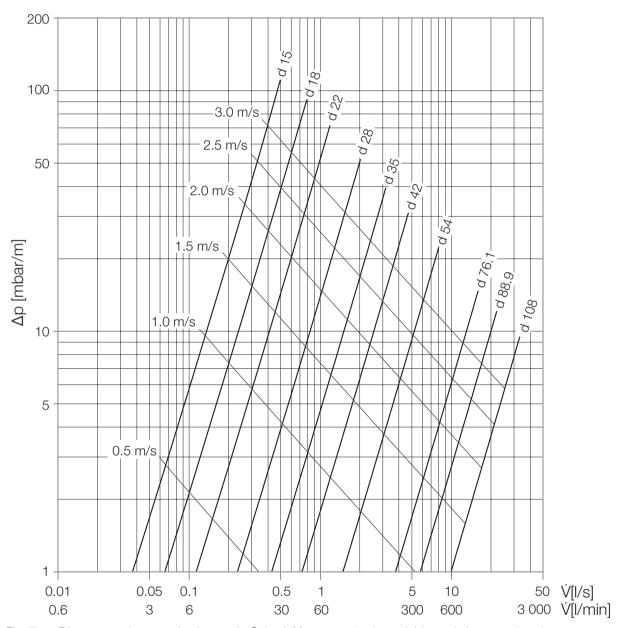
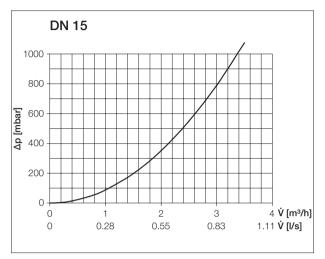
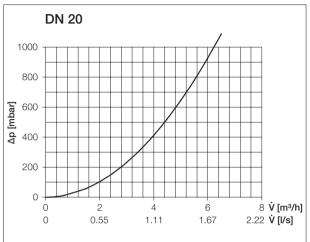
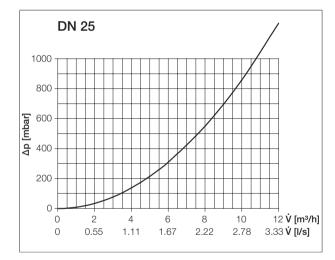
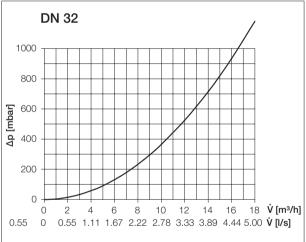


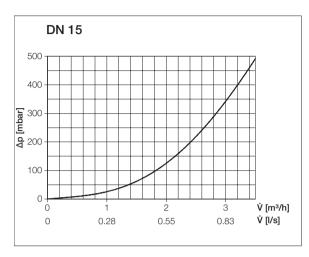
Fig. 7: Diagramme de perte de charge du Geberit Mapress acier inoxydable sanitaire, eau chaude

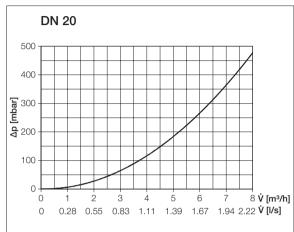

Diagramme de perte de charge des systèmes d'alimentation Geberit

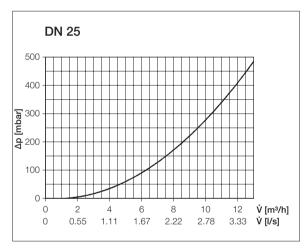

1.4.4 Diagrammes de perte de charge de la robinetterie de distribution Geberit

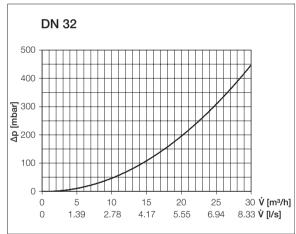

Robinets d'arrêt droits Geberit

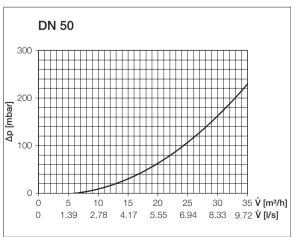

Diagramme de perte de charge pour les robinets d'arrêt droits Geberit, pour les dimensions DN 15 - DN 32.

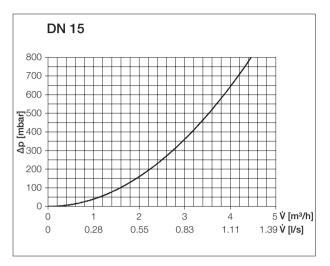


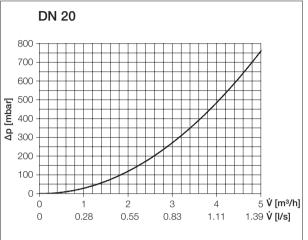



Robinets d'arrêt obliques Geberit


Diagramme de perte de charge pour les robinets d'arrêt obliques Geberit, pour les dimensions DN 15 - DN 50.






Diagramme de perte de charge des systèmes d'alimentation Geberit

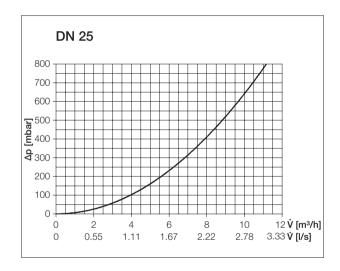

Robinets d'arrêt à encastrer Geberit

Diagramme de perte de charge pour les robinets d'arrêt à encastrer Geberit, pour les dimensions DN 15 - DN 25.

Perte de charge des prises pour compteur d'eau

Diagramme de perte de charge des prises pour compteur d'eau Geberit avec et sans compteur de capsule KOAX.

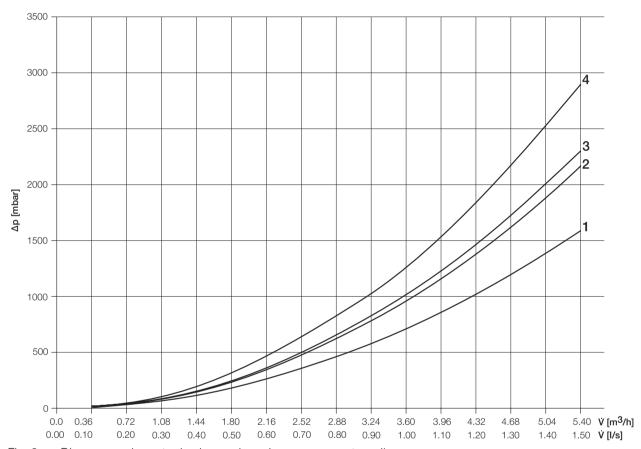


Fig. 8: Diagramme de perte de charge des prises pour compteur d'eau

- 1 Prise pour compteur d'eau, unité compacte sans compteur, 3/4"
- 2 Prise pour compteur d'eau, unité compacte sans compteur, raccord Mepla ø 26
- 3 Prise pour compteur d'eau, unité compacte avec compteur 1.5 m³/h, 3/4"
- 4 Prise pour compteur d'eau, unité compacte avec compteur 1.5 m³/h, raccord Mepla ø 26

Diagramme de perte de charge des systèmes d'alimentation Geberit

Perte de charge des compteurs d'eau Unico®

La directive européenne inhérente aux appareils de mesure **MID** (Measurement Instruments Directive) est en vigueur depuis le mois d'octobre 2006. La MID a une influence capitale sur la définition des dimensions du débit pour les compteurs d'eaux résiduaires.

Q_1	plus petit débit	analogue à	Q_{min}
Q_2	débit de passage	analogue à	Q_{t}
Q_3	débit constant	analogue à	Q_{n}
Q_4	débit de surcharge	analogue à	Q_{max}

En ce qui concerne les compteurs d'eau Unico®, les retombées sont les suivantes:

Nouvelle désignation				Ancienne désignation				
Q ₁ [l/h]	Q ₂ [l/h]	Q ₃ [m³/h]	Q ₄ [m³/h]	Q _{min} [l/h]	Q _t [l/h]	Q _n [m³/h]	Q _{max} [m³/h]	
25	40	2.5	3.125	30	120	1.5	3	

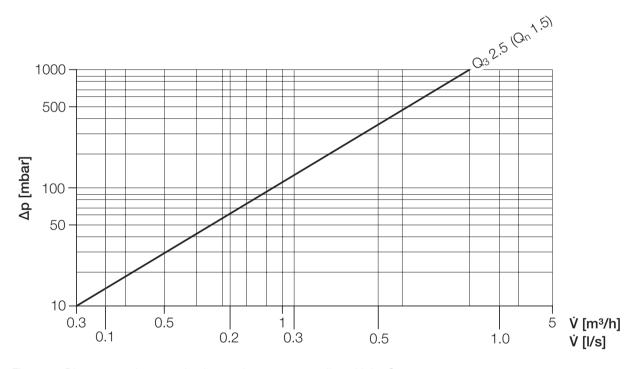


Fig. 9: Diagramme de perte de charge des compteurs d'eau Unico®

1.5 **Annexe**

1.5.1 Volume spécifique et densité de l'eau

Tableau 11:	Tompérature	וובם'ו בה	densité et volume	
Tableau II.	remberature (ue i eau.	delisite et volulle	

Tableau 11:	Température de l'e	au, densité et volume	Température	Densité	Volume spécifique
Température	Densité	Volume spécifique	9 en °C	ρ en kg/m³	∨ en dm³/kg
9 en °C	ρ en kg/m³	∨ en dm³/kg	46	989.8	1.0103
0	999.8	1.0002	47	989.4	1.0107
1	999.9	1.0001	48	988.9	1.0112
2	999.9	1.0001	49	988.4	1.0117
3	999.9	1.0001	50	988.0	1.0121
4	1 000	1	51	987.6	1.0126
5	1 000	1.0000	52	987.1	1.0131
6	1 000	1.0000	53	986.6	1.0136
7	999.9	1.0001	54	986.2	1.0140
8	999.9	1.0001	55	985.7	1.0145
9	999.8	1.0002	56	985.2	1.0150
10	999.7	1.0003	57	984.6	1.0156
11	999.7	1.0003	58	984.2	1.0161
12	999.6	1.0004	59	983.7	1.0166
13	999.4	1.0006	60	983.2	1.0171
14	999.3	1.0007	61	982.6	1.0177
15	999.2	1.0008	62	982.1	1.0182
16	999.0	1.0010	63	981.5	1.0188
17	998.8	1.0012	64	981.0	1.0193
18	998.7	1.0013	65	980.5	1.0199
19	998.5	1.0015	66	979.9	1.0205
20	998.3	1.0017	67	979.2	1.0203
21	998.1	1.0019	68	978.8	1.0217
22	997.8	1.0022	69		
23	997.6	1.0024		978.2	1.0223
24	997.4	1.0026	70	977.7	1.0228
25	997.1	1.0029	71	977.0	1.0235
26	996.8	1.0023	72	976.5	1.0241
27	996.6	1.0034	73	975.9	1.0247
28	996.3	1.0037	74	975.3	1.0253
29	996.0	1.0040	75 	974.8	1.0259
30	995.7		76	974.1	1.0266
		1.0043	77	973.5	1.0272
31	995.4	1.0046	78	972.9	1.0279
32	995.1	1.0049	79	972.3	1.0285
33	994.7	1.0053	80	971.6	1.0292
34	994.4	1.0056	81	971.0	1.0299
35	994.0	1.0060	82	970.4	1.0305
36	993.7	1.0063	83	969.7	1.0312
37	993.3	1.0067	84	969.1	1.0319
38	993.0	1.0070	85	968.4	1.0326
39	992.7	1.0074	86	967.8	1.0333
40	992.3	1.0078	87	967.1	1.0340
41	991.9	1.0082	88	966.5	1.0347
42	991.5	1.0086	89	965.8	1.0354
43	991.1	1.0090	90	965.2	1.0361
44	990.7	1.0094	95	961.6	1.0399
45	990.2	1.0099	100	958.1	1.0437

1.5.2 Exemple de calcul de perte de charge, eau

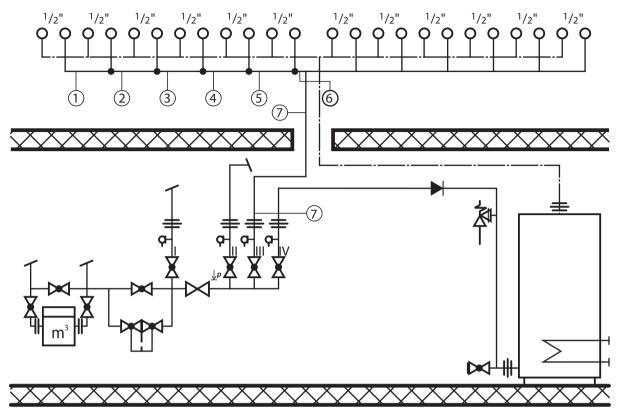


Fig. 10: Installation de douche avec 12 douches (hypothèse 100 % de simultanéité)

Tableau 12: Calcul de la perte de charge du Geberit Mapress acier inoxydable avec des longueurs de tube équivalentes

• • • • • • • • • • • • • • • • • • • •								
Tronçon	Diamètre du tube	Longueur du tronçon	Supplément de résistances unitaires		Longueur totale	Débit volumique	Perte de charge ∆p	
TR	Ø					V	par m	Total
No.	mm	m	m		m	I/s	mbar	mbar
1	15	1.0	1 raccord de robinetterie 1 coude 90°	0.58 0.24				
					1.82	0.22	29.5	53.7
2	18	0.5	1 té de passage	0.11	0.61	0.44	37.0	22.6
3	22	0.5	1 té de passage	0.14	0.64	0.66	28.7	18.4
4	28	0.5	1 té de passage	0.15	0.65	0.88	13.4	8.7
5	28	0.5	1 té de passage	0.15	0.65	1.10	19.7	12.8
6	35	0.2	1 té de passage	0.20	0.40	1.32	9.4	3.8
7	42	16.8	1 té d'embranchement 2 coudes 90° 1 manchon 1 robinet d'arrêt oblique 1 sortie de distribution	2.39 1.34 0.18 2.00 1.20				
					23.91	2.64	12.4	296.5
Perte de charge totale TR 1 - 7							416.5	
Perte de charge totale TR 1 - 7 en tenant compte du facteur de réduction 0.85							354	

Pour le calcul de la perte de charge, nous recommandons le Geberit ProPlanner.

© Copyright by Geberit Distribution SA, Jona, juillet 2013